已知:如图①,Rt△ABC中,∠ACB=90°,AC=BC,点D、E在斜边AB上(不包括端点),且∠DCE=45°,AB=4。

2025-06-26 22:44:46
推荐回答(1个)
回答1:

解:(1)△AEC∽△CED,△AEC∽△BCD。
∵∠ACD+∠DCE=∠ACD+45°
∴∠ACE=∠BDC
∴△AEC∽△BCD。
(2)△AEC∽△BCD
∴BD·AE=AC 2
BD·AE=AC 2 =8
(2<x<4)。
(3)将△ABE绕点C顺时针旋转90°,设E点对应点为E″,
连接E″D
∵∠ACB=90°,AC=BC
∴旋转后B与A重合
又∵∠DCE=45°
∴∠E″CD=45°
又∵CE″=CE,CD为公共边
∴△CE”D≌△CED
∴DE″=DE
又∵∠E″AC=45°,∠CAD=45°
∴∠E″AD=90°
∴线段DE、AD、EB总能构成一个直角三角形。
(4)AD:DE: EB=1: :1。