三角函数的降幂公式是:cos²α
=
(
1+
cos2α
)
/
2
sin²α=(
1
-
cos2α
)
/
2
tan²α=(1-cos2α)/(1+cos2α)
运用二倍角公式就是升幂,将公式cos2α变形后可得到降幂公式:
cos2α=cos²α-sin²α=2cos²α-1=1-2sin²α
∴cos²α=(1+cos2α)/2
sin²α=(1-cos2α)/2
降幂公式,就是降低指数幂由2次变为1次的公式,可以减轻二次方的麻烦。
二倍角公式:
sin2α=2sinαcosα
cos2α=cos²α-sin²α=2cos²α-1=1-2sin²α
tan2α=2tanα/(1-tan²α)
都是二倍角公式的逆用,好记:sinxcosx=1/2sin2x,(sinx)^2=1/2(1-cos2x),(cosx)^2=1/2(1+cos2x),公式从左到右是升幂公式,三个的系数都是1/2,在降次的同时角度升为原来的2倍