(Ⅰ)∵an+1=
,∴an 4an+1
=4+1 an+1
,即1 an
?1 an+1
=4,∴bn+1-bn=4.1 an
∴数列{bn}是以1为首项,4为公差的等差数列.∴
=bn=1+4(n?1)=4n-3,1 an
∴数列{an}的通项公式为an=
.1 4n?3
(Ⅱ)由(Ⅰ)知cn=bn?2n=(4n-3)2n,
∴Sn=1×21+5×22+9×23+…+(4n?3)?2n…①
同乘以2得,2Sn=1×22+5×23+9×24+…+(4n?3)?2n+1…②
②-①得,?Sn=2?(4n?3)2n+1+4×(22+23+24+…+2n)
=2?(4n?3)2n+1+
=2-(4n-3)2n+1+16×2n-1-164×22×(1?2n?1) 1?2
=-14+2n+1×(4-4n+3)=-14+(7-4n)2n+1
∴数列{cn}的前n项和Sn=(4n?7)?2n+1+14