已知数列{an}的首项a1=1,且满足an+1=an4an+1(n∈N*).(Ⅰ)设bn=1an,求证:数列{bn}是等差数列,并求

2025-06-25 09:58:55
推荐回答(1个)
回答1:

(Ⅰ)∵an+1

an
4an+1
,∴
1
an+1
=4+
1
an
,即
1
an+1
?
1
an
=4
,∴bn+1-bn=4.
∴数列{bn}是以1为首项,4为公差的等差数列.∴
1
an
bn=1+4(n?1)
=4n-3,
∴数列{an}的通项公式为an
1
4n?3

(Ⅱ)由(Ⅰ)知cnbn?2n=(4n-3)2n
Sn1×21+5×22+9×23+…+(4n?3)?2n…①
同乘以2得,2Sn1×22+5×23+9×24+…+(4n?3)?2n+1…②
②-①得,?Sn=2?(4n?3)2n+1+4×(22+23+24+…+2n)
=2?(4n?3)2n+1+
22×(1?2n?1)
1?2
=2-(4n-3)2n+1+16×2n-1-16
=-14+2n+1×(4-4n+3)=-14+(7-4n)2n+1
∴数列{cn}的前n项和Sn=(4n?7)?2n+1+14