设数列{an}满足a1=2,a2+a4=8,且对任意的n∈N*,都有an+an+2=2an+1(Ⅰ)求数列{an}的通项公式;(Ⅱ)

2025-06-28 08:00:09
推荐回答(1个)
回答1:

(Ⅰ)由n∈N*,都有an+an+2=2an+1,知{an}为等差数列,设公差为d,
∵a1=2,a2+a4=8,∴2×2+4d=8,解得d=1,
∴an=a1+(n-1)d=2+(n-1)×1=n+1;
(Ⅱ)由S1Sn=2bn-b1得,
当n=1时,有b12=2b1?b1b1,∵b1≠0,∴b1=1,Sn=2bn-1①,
当n≥2时,Sn-1=2bn-1-1②,
①-②得,bn=2bn-2bn-1,即bn=2bn-1(n≥2),
则数列{bn}是首项为1,公比为2的等比数列,bn2n?1
∴anbn=(n+1)?2n-1
Tn=2+3×2+4×22+…+n?2n-2+(n+1)?2n-1③,
2Tn=2×2+3×22+4×23+n?2n-1+(n+1)?2n④,
③-④得,-Tn=2+2+22+…+2n-1-(n+1)?2n
=1+

2n?1
2?1
=(n+1)?2n=-n?2n
∴Tn=n?2n