化简式子:√(1+(1⼀n2)+(1⼀(n+1)2))

2025-06-27 00:20:18
推荐回答(1个)
回答1:

(1+(1/n2)+(1/(n+1)2))
=(n^4+2n^3+3n^2+2n+1)/n^2(n+1)^2
=(n^2+n+1)^2/n^2(n+1)^2

√(1+(1/n2)+(1/(n+1)2))
=(n^2+n+1)/n(n+1)
=1+1/n(n+1)