解答:解:(1)由已知an=Sn-1+2,①
an+1=Sn+2,②
②-①,得an+1-an=Sn-Sn-1
(n≥2),
∴an+1=2an
(n≥2).
又a1=2,∴a2=a1+2=4=2a1,
∴an+1=2an
(n=1,2,3,…)
∴数列{an}是一个以2为首项,2为公比的等比数列,
∴an=2•2n-1=2n.
(2)bn=
1
log2an
=
1
log22n
=
1
n
,
∴Tn=bn+1+bn+2+…+b2n=
1
n+1
+
1
n+2
+…+
1
2n
,
Tn+1=bn+2+bn+3+…+b2(n+1)
=
1
n+2
+
1
n+3
+…+
1
2n
+
1
2n+1
+
1
2n+2
.
∴Tn+1-Tn=
1
2n+1
+
1
2n+2
-
1
n+1
=
2(n+1)+(2n+1)-2(2n+1)
2(2n+1)(n+1)
=
1
2(2n+1)(n+1)
.
∵n是正整数,∴Tn+1-Tn>0,即Tn+1>Tn.
∴数列{Tn}是一个单调递增数列,
又T1=b2=
1
2
,∴Tn≥T1=
1
2
,
要使Tn>
k
12
恒成立,则有
1
2
>
k
12
,即k<6,
又k是正整数,故存在最大正整数k=5使Tn>
k
12
恒成立.