两边同除AnA(n+1)
1/An-1/A(n+1)=2
1/A(n+1)-1/An=-2
{1/An}是公差为-2的等差数列
1/A1=1/2
1/An=1/2-2(n-1)=5/2-2n=(5-4n)/2
An=2/(5-4n)
a2-a1=2a1a2,a1=2,3a2=-2,a2=-2/3;
a3-a2=2a2a3,a2=-2/3,7a3/3=-2/3,a3=-2/7;
a4-a3=2a3a4,a3=-2/7,11a4/7=-2/7,a4=-2/11;
归纳法:an=-2/[4(n-1)-1]=-2/(4n-5),n>=1
证:a(n+1)-an=2ana(n+1),a(n+1)=an/(1-2an)=-2/(4n-5)/[1+4/(4n-5)]
a(n+1)=-2/[4n-5+4]=-2/[4(n+1)-5]
证毕。
将等式两边同除以ana(n+1)
1/an-1/a(n+1)=2
1/a(n+1)-1/an=-2
1/an为公差为-2的等差数列
1/a1=1/2
1/an=1/2-2*(n-1)=(5-4n)/2
an=2/(5-4n)
n=1时 a1=2
n=2时 a2=-2/3