因为x)在[-2,2]上是奇函数所以 f(-x)=-f(x); -2<=x<=2;-2<=1+m<=2f(1+m)+f(x)<0所以 f(1+m)<-f(x) 即 f(1+m)又 f(x)在[0,2]上是单调递减 所以f(x)在[-2,2]上单调递减 故 1+m>-x 得m>1-x综上有 1-x
f(x)在[0,2]上递减,则在[-2,0]上也递减,且f(0)=0,f(-x)=-f(x)f(1+m)+f(x)<0等价于f(1+m)<-f(x),即f(1+m)因为f(x)是减函数,那么1+m>-x,即m>-1-x,而x在[-2,2]上取值,又1+m<=2,综上-1-x