矩形ABCD,点E在AB边上,沿CE折叠矩形ABCD,使B落在AD边上的点F处,若AB=4,BC=5,则tan∠AFE的值

要具体的过程~~~~~谢
2025-06-28 01:30:40
推荐回答(1个)
回答1:

⊿EBC≌⊿EFC ∴EF=EB 且FC=BC=5 ∴AE+EF=AB=5
在RT⊿FCD中:DC=AB=4﹙矩形性质﹚ FC=5 ∴由勾股定理得FD=3
∵AD=BC=5﹙矩形性质﹚ ∴AF=2
在RT⊿AEF中AE+EF=AB=4 AF=2 ∴设AE=x 则EF=4-x
∴AE²+AF²=EF²即x²+2²=﹙4-x﹚²
解得x=1.5
∴AE =1.5
∴tan∠AFE=AE/AF=1.5/2=3/4