(1)∵s7=
×7=7a4=63(a1+a7) 2
∴a4=9,又a4+a5+a6=33,3a5=33,则a5=11
公差d=2,an=2n+1;
(2)∵bn=2an+n=22n+1+n
∴Tn=b1+b2+…+bn=(23+1)+(25+2)+??+(22n+1+n)
=(23+25+…+22n+1)+(1+2+…+n)
=
+8(4n?1) 3
n(n+1) 2
(3)由等差数列的前n项和公式可得,Sn=3n+
×2=n2+2n=n(n+2)n(n?1) 2
∴
=1 Sn
=1 n(n+2)
(1 2
?1 n
)1 n+2
∴
+1 S1
+…+1 S2
=1 Sn
(1?1 2
+1 3
?1 2
+…+1 4
?1 n
)1 n+2
=
(1+1 2
?1 2
?1 1+n
)=1 n+2
?3 4
<2n+3 2(n+1)(n+2)
3 4