已知a1=1,an+1=(n+2)⼀(n+1)*an,求an

2025-06-26 19:44:12
推荐回答(2个)
回答1:

a(n+1)=(n+2)/(n+1)*an
a(n+1)/an=(n+2)/(n+1)
an/a(n-1)=(n+1)/n

an/a(n-1)=(n+1)/n
..............
a3/a2=4/3
a2/a1=3/2
以上等式相乘得
an/a1=(n+1)/2
an/1=(n+1)/2
an=(n+1)/2

回答2:

a2/a1=3/2
a3/a2=4/3
a4/a3=5/4

an-1/an-2=n/n-1
an/an-1=(n+1)/n

每个式子相乘可得, an/a1=n+1/2

所以an=(n+1)/2