下图提供三种详细解法:
(点击放大)
用分部积分法:∫udv = uv - ∫vdu
u = -√(1 - x²), dv = -dx/x² = d(1/x), v = 1/x
不定积分为F(x) = -x⁻¹√(1 - x²) - arcsinx + C
F(1) = -arcsin1 + C = -π/2 + C
F(√2/2) = -√2*√(1 - 2/4) - arcsin(√2/2) + C = -1 - π/4 + C
定积分为 -π/2 + C - ( -1 - π/4 + C) = 1 - π/4