y'+(1/x)y=sinx/x
因为x≠0,所以等式两边同时乘以x,得
xy'+y=sinx
y'=dy/dx
所以上式:xdy/dx+y=sinx
等式两边同时乘以dx,再移项
得:xdy=(sinx-y)dx
对两边同时积分:∫xdy=∫(sinx-y)dx
解得:xy=-cosx-xy+c
(c为常数)
所以y=(c-cosx)/2x
再将题中条件代如,得c=2π-1
所以特解:y=(2π-1+cosx)/2x
题目有歧义,若是
y'
=
(x+y)/(x-y),
则为齐次方程,
令
y
=
px,
则
p+xdp/dx
=
(1+p)/(1-p)
xdp/dx
=
(1+p^2)/(1-p)
(1-p)dp/(1+p^2)
=
dx/x
arctanp
-
(1/2)ln(1+p^2)
=
lnx
+
(1/2)lnC
2arctanp
=
ln(1+p^2)
+
2lnx
+
lnC
Cx^2(1+p^2)
=
e^(2arctanp)
通解
C(x^2+y^2)
=
e^[2arctan(y/x)]
y(1)
=
1
代入,得
C
=
(1/2)e^(π/2)
则
(1/2)e^(π/2)(x^2+y^2)
=
e^[2arctan(y/x)]